
Chad Philip Johnson

CSCI20, Worthington

October 05th, 2012

Pencil & Paper 07

1. How does your text define array?

According to our textbook, an array “is a data structure used to process a collection of data

that is all of the same type, such as a list of numbers of type double or a list of strings”

(346). It also mentions that an array “behaves like a list of variables with a uniform naming

mechanism that can be declared in a single line of simple code” (346).

2. According to your text, an array object is different from other objects you have

encountered in what two ways?

According to our textbook, arrays are viewed “as a collection of indexed variables and as a

single item whose value is a collection of values of the base type” (356). Arrays are

collections of variables in that a single variable name along with an index value can access

many related values of the same type. Like other objects, arrays are reference types and

contain the address of where the array object is stored in memory. However, this address

represents the location in memory where the array’s collection of grouped values are

stored.

3. Declare an array of type double of size 31. Name the array

januaryTemperatures.

The following line of code will declare an array of type double size 31:
 double[] januaryTemperatures = new double[31];

4. Assign the value 30.4 to the first day of the array januaryTemperatures that

you declared above.

The following line of code performs this assignment:
 januaryTemperatures[0] = 30.4;

5. Write a for loop to prompt for and read in the temperature values for the

remaining days for januaryTemperatures (exclude the first day, since that has

been assigned above), using an instance of CinReader named reader. Assume that

the code 'CinReader reader = new CinReader();' has already been written.

The following lines of code perform this task:
 for(int i = 1; i < januaryTemperatures.length; i++) {

 januaryTemperatures[i] = reader.readDouble();

 }

6. Fill in the following blanks with the answers appropriate to the following array

declaration:

int [] movieRatings = new int[100];

array base type: int

array name: movieRatings

array size: 100

first element index: 0

last element index: 99

7. Write a for loop to display all of the values in the array myFavoriteMovies to the

console.

The following lines of code perform this task:
 for(int i = 0; i < myFavoriteMovies.length; i++) {

 System.out.printf(“[%d] %f\n”, i, myFavoriteMovies[i]);

 }

8. Write a for-each statement to create a display using all of the values from the

int array wins. The display should say "Hooray!" if the wins value is greater than

10, otherwise the display should say "Boo!".

The following lines of code perform this task:
 for(int score : wins) {

 if(score > 10) {

 System.out.printf(“Hooray! %d\n”, score);

 else

 System.out.printf(“Boo! %d\n”, score);

 }

 }

9. What is the name for the error that occurs when an array index is used that is

less than zero or greater than or equal to the size of the array?

This is called the array index out of bounds exception. According to our textbook, this error

occurs when “an index expression evaluates to some value other than those allowed by the

array declaration” 352.

10. Does the following code cause the error described above? Explain your

answer.
char [] letters = new char[26];

letters[26] = 'Z';

Yes, this produces the array index out of bounds exception. The first index value for the

array letters is 0 and the final index value is 25, representing an array of total length 26.

The index number 26 represents the 27th char in the array letters, which does not exist.

11. Declare and initialize, in a single line of Java code, a String array named

eightball with the answers "yes", "no", "maybe", and "never".

The following line of code performs this task:
 String[] eightball = new String[] { “yes”, “no”, “maybe”, “never” };

12. What output is produced by the following code?
int [] numbers = {3,5,7,9,11};

for (int n : numbers)

{

 if (n % 3 == 0)

 System.out.println(n + " is divisible by three");

}

The output is as follows:

 3 is divisible by three

 9 is divisible by three

13. What output is produced by the following code?
boolean [] flags = {true, false, true, false, true, false};

for (int i=0; i<flags.length; i+=2)

{

 if (flags[i] == true)

 System.out.print("yes,");

 else

 System.out.print("no,");

}

The output is as follows:

 yes,yes,yes,

14. What is a local variable? Can two different methods have local variables with

the same name?

A local variable is a variable declared within a method and is visible only within the

containing method. It can have the same name as a field in the class or as a field in

another method. According to our textbook a local variable is “a variable declared within a

method. It is called local because is meaning is local to—that is, confined to—the method

definition. If you have two methods and each of them declares a variable of the same

name—for example, if both were named keyboard—they would be two different variables

that just happen to have the same name. Any change that is made to the variable named

keyboard within one method would have no effect upon the variable named keyboard in the

other method” (186).

15. What is a formal parameter for a method? What is an argument to a method?

According to our textbook, a formal parameter is “like a blank that is filled in with a

particular value when the method is invoked” (188). An argument is directly related to the

parameter and is “the value that is plugged in for the parameter” (188-189). Methods

contain parameters whenever additional values are needed from another part of the

program in order to perform its operations. The particular values passed to the method are

its arguments, and this occurs whenever the method is called.

