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Cooperative and Competitive Species 

 
Summary:  Our group researched the qualities of systems of differential equations that are used to model 
cooperative and competitive species.  We used a combination of qualitative, numerical and analytical 
techniques to make observations about the general behaviors of the following two pairs of systems:  
 

A dx/dt = -4x + 3xy  
dy/dt = -3y + 2xy B dx/dt = 5x – 2x2 – 4xy 

dy/dt = 7y – 4xy – 3y2 
 
Finding Equilibria:  Equilibrium points for both systems were determined by setting each equation equal to 
zero and then using algebra to find the appropriate values for x and for y that balanced the equation.  For 
system A there are two equilibria: 
 

dx/dt = -4x + 3xy   �   dx/dt = x ( 3y – 4 ) 
dy/dt = -3y + 2xy   �   dy/dt = y ( 2x – 3 ) 

 
3y – 4 = 0   �   y = 4/3 
2x – 3 = 0   �   x = 3/2 

 
Equilibria at (0, 0) and (4/3, 3/2) 

 
It is known for the above system that setting both variables to equal zero also produces an 

equilibrium point at (0, 0).  This is also true for system B, which has three additional equilibria: 
 

dx/dt = 5x – 2x2 – 4xy   �   dx/dt = x ( 5 – 2x – 4y ) 
dy/dt = 7y – 4xy – 3y2   �   dy/dt = y ( 7 – 4x – 3y ) 

 
-2 ( 5 – 2x – 4y = 0 ) 

    7 – 4x – 3y = 0 
   -3        + 5y = 0 
x = 13/10, y = 3/5 

 
y ( 7 – 4x – 3y ) = 0, x = 0   �   y [ 7 – 4(0) – 3y ] = 0   �   y = 7/3 
x ( 5 – 2x – 4y ) = 0, y = 0   �   x [ 5 – 2x – 4(0) ] = 0   �   x = 2/5 

 
Equilibria at (0, 0), (13/10, 3/5), (0, 7/3) and (2/5, 0) 

 
Explanation of Systems:  For system A, we found that x and y share a cooperative relationship as long as 
neither are zero.  When either is equal to zero, the other is effected negatively. Systems of this nature 
depict two species whose survival depends on a constant relationship with one another, such as bees 
and flowers:  one flower needs to be pollinated by multiple bees to reproduce, and bees gather pollen 
from multiple flowers for enough food for the colony. The values x and y must be greater than the 
equilibrium point of (4/3, 3/2) to see a positive change in growth. This can be attributed to the negative 
coefficients at the beginning of each equation. If they are equal to the aforementioned point, the change 
will be zero, resulting in an equal self sustaining population with no growth. If the values of (x, y) decrease 
less than those mentioned (0 ≤ x ≤ 4/3, 0 ≤ y ≤ 3/2), the growth rate will become negative causing the 
population to approach zero.   

We found system B to be a competitive system. This conclusion was made by observing that 
when either population comes in contact with the other, the rate at which the population declines 
increases. Both equations will decline on their own at an exponential rate until the other the population 
interacts. Only when a population’s numbers are at very small (decimal) numbers will there by any 
positive growth. For the change in y, it does seem that the population dies off at a faster rate in this 
relationship due to its negative coefficient on the -3y2 term. This is the major deciding factor since 
exponential term's behavior outweighs all others. The same type of behavior also occurs for the change in 
x with the term -2x2. 



Behaviors of Solutions:   
 
 
 
 
For System A, solutions in region 
I will always head towards 
positive infinity for both x and y.  
Solutions in region II will head 
towards the bottom right until they 
approach the x nullcline where 
they then drift away from the 
equilibrium (4/3, 3/2) towards 
region I. Solutions in region III will 
always decline towards the 
bottom left corner to equilibrium 
(0, 0). Solutions in region IV will 
head towards the top left until 
they approach the y nullcline.  
They then head away from the 
source equilibrium (4/3, 3/2) and 
towards region I. 
 
 
 
 
 

 
 
 

 
For System B, solutions in region 
A will head towards the bottom 
left until reaching the x and y 
nullcline where they then move 
away from the source equilibrium 
(13/10, 3/5).  Solutions with an 
initial y value greater than 1 will 
go to equilibrium (0, 7/3).  When 
the initial value of y is less than 1, 
the solutions go to the equilibrium 
point (5/2, 0). Solutions in region 
II will head towards the bottom 
right corner until reaching the y 
nullcline where they will then go 
away from the source equilibrium 
(13/10, 3/5) towards region III. 
Solutions in region III will always 
head in the direction of the bottom 
right corner towards the 
equilibrium (0, 0). Solutions in 
region IV (small bottom triangle) 
will head towards the top left 
corner until the x nullcline then 
head towards region III. 
 



Evolution Scenarios: 
 
System A 

 
 
 
 
 
 
 
 
 
This graph shows that for both 
populations to grow or be sustained the 
initial population of x or y must be large. If 
either value is too small then both 
populations go extinct. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
As shown by this x vs. t graph, when starting 
with a large initial value for x with a suitably 
large value for y, the size of the population x 
will first decrease as the population of y first 
increases, then the population of x will begin 
to rise with that of y. 
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The exact opposite happens for large values 
of y:  as x increases y will decreases initially. 
Eventually y will begin to increase along with 
x.  For solutions of this system that are 
increasing we see both populations go to 
infinity which is unrealistic for real populations 
(these equation models do not include 
carrying capacities). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
System B 
 
 
 
 
 
 
For very small values of x the population 
of y will ultimately increase, and if the 
value of y is great enough the population 
of y will also ultimately increase. 
However for large values of x, the 
population of y ultimately goes extinct 
while x ultimately increases. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
For a large value of y, the population of x 
continuously decreases till it becomes extinct.  
On the other hand, y initially plunges then 
recovers, rising to a constant rate of increase 
in population. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
For a large value of x, the population of y 
decreases rapidly, temporarily reaching a 
plateau before it begins declining toward 
extinction. Meanwhile, the population of x 
dips initially but then rises to a constant rate 
of increase. 
 
 
 
 
 


