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Summary:  Methods of qualitative investigation are necessary in determining behavioral 
characteristics of differential equations.  These can be used to provide descriptions and 
explanations for problems without direct solutions, and also as tools in the effective 
application of mathematical models to real world phenomena.

When applying a Laplace transform to a particular problem, qualitative information 
may be discerned by observing the characteristics of the transform's poles:  the root values 
which occur in the denominator of the new expression from the original transformed 
function.  This is a qualitative approach which can be used to obtain behavioral explanations
with only a small amount of work and to provide important details when analytical 
approaches are not successful.  

Methods:  The technique of applying Laplace transforms to differential equations is used to 
find the poles of eight unique problems, with solutions then being calculated through the 
required means.  Separate graphs for each problem's pole expressions and the solution are 
presented to find consistencies and general behaviors.  A special case of observations is 
made into the effects of transforming a function, taking its derivative with respect to s, and 
then inverting this final expression to produce a new function.

Equation A:  
dy
dt

+ y=e−t y (0)=0

L[ dydt ]+ L [ y ]=L [e−t ]

s L [ y ]− y (0)+ L [ y ]=L [e−t ]
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Double pole at s=−1

Graph of solution y (t )=te−t



A double pole is observed at s=−1 . The denominator of the Laplace transform resembles 
the function f (t )=te−t . The solution represents negative exponential growth as t→−∞
and decays as t→∞.

Equation B:  
dy
dt

+ y=t y (0)=0

L[ dydt ]+ L [ y ]=L [t ]

s L [ y ]− y (0)+ L [ y ]=L [ t ]
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Single pole at s=−1
Double pole at s=0

Graph of solution y (t )=e−t+ t−1

A single pole is observed at s=−1 and a double pole is observed at s=0 . Splitting the 
denominator of the Laplace transform into pieces through partial fraction decomposition 
produces terms that resemble the functions f ( t )=t , g ( t )=−k , and h (t )=e−t . The
h ( t ) function produces exponential growth and dominates the expression as t→−∞  

while the f ( t ) function dominates as t→∞ and produces a line with the slope equal to 
1.



Equation C:  
dy
dt

+ y=t 2 y (0)=0

L[ dydt ]+ L [ y ]=L [t 2 ]

s L [ y ]− y (0)+ L [ y ]=L [ t 2 ]
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y (t )=L−1[ 2
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Single pole at s=−1
Triple pole at s=0

Graph of solution y (t )=−2e−t+ t 2−2t+ 2

A single pole is observed at s=−1 and a triple pole is observed at s=0 . Splitting the 
denominator of the Laplace transform into pieces through partial fraction decomposition 
produces terms that resemble the functions f ( t )=k , g ( t )=−t , h (t )=t 2 , and

q (t )=−e−t . The q (t ) function produces exponential growth and dominates the 

expression as t→−∞ while the h ( t ) function produces a parabola and dominates as
t→∞.



Equation D:  
d 2 y
dt 2

+ 9y=sin (3t ) y (0)=0 y ' (0)=0

Calculations to determine poles:

L[ d
2 y
dt 2 ]+ 9 L [ y ]=L [sin (3t ) ]

s2L [ y ]−s y (0)− y ' (0)+ 9 L [ y ]=L [sin (3t ) ]

(s2
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Calculations to determine the solution:
yh(t)=k 1 cos (3t )+ k 2 sin (3t )

y ' h(t)=−3k1sin (3t )+ 3k 2cos (3t )

yh(0)=k 1+ 0=0 k 1=0

y ' h(0)=0+ 3k2=0 k 2=0

yh(t)=0

Complexified forcing term:
d 2 y
dt 2

+ 9y=e i3t

Guessed solution: y (t )=Ate i3t

(i6Aei3t−9Ate i3t)+ 9(Atei3t)=ei3t A=
−i
6

y (t )=(−i6 )tei3t=1
6
tsin(3t )+ i[−1

6
tcos (3t )]

y p ( t )=−
1
6
tcos (3t )

y ( t )= yh+ y p=−
1
6
tcos (3t )
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Double pole at s=±i3

Graph of solution y ( t )=−
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A double pole is observed at s=±i3 . The solution could not be found by inverting the 
transform by using known techniques.  The period and frequency of the function are

2π /3 and 3/2π , respectively, and were found through the value of the complex 
number for the pole.  A damping term does not exist for this differential equation, which is 
what causes the solution to increase linearly with an amplitude value of −t /6 for all values
of t .

Equation E:  
d 2 y
dt 2

+ 9y=t y (0)=0 y ' (0)=0

L[ d
2 y
dt 2 ]+ 9 L [ y ]=L [ t ]

s2L [ y ]−s y (0)− y ' (0)+ 9 L [ y ]=L [t ]
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A single pole is observed at s=±i3 and a double pole is observed at s=0 . Splitting the 
denominator of the Laplace transform into pieces through partial fraction decomposition 
produces terms that resemble the functions f ( t )=t and g (t )=−sin (3t ). The f ( t )
function dominates the expression for all values of t and produces a line, while the g (t )
function causes small oscillations with amplitude −1 /3 along this line.  The period is

2π /3 and the frequency is 3/2π , which were determined through the value of the 
complex number for the pole.  The damping term is absent from this differential equation.

Equation F:  
d 2 y
dt 2

+ 9y=t 2 y (0)=0 y ' (0)=0

L[ d
2 y
dt 2 ]+ 9 L [ y ]=L [ t2 ]

s2L [ y ]−s y (0)− y ' (0)+ 9 L [ y ]=L [t 2 ]
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A single pole is observed at s=±i3 and a triple pole is observed at s=0 . Splitting the 
denominator of the Laplace transform into pieces through partial fraction decomposition 
produces terms that resemble the functions f ( t )=cos (3t ) , g (t )=−k , and h (t )=t 2 .
The h (t ) function dominates the expression for all values of t and produces a parabola, 
while the f ( t ) function causes miniscule oscillations with amplitude 2 /81 to occur along 
the parabola.  The period is 2π /3 and the frequency is 3/2π , which were determined 
through the value of the complex number for the pole.  The damping term is absent from 
this differential equation.

Equation G:  
d 2 y
dt 2

+ 3
dy
dt

+ 2y=e−t y (0)=0 y ' (0)=0

L[ d
2 y
dt 2 ]+ 3 L[ dydt ]+ 2 L [ y ]=L [e−t ]

s2L [ y ]−s y (0)− y ' (0)+ 3s L [ y ]−3 y (0)+ 2 L [ y ]=L [e−t ]
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Single pole at s=−2
Double pole at s=−1

Graph of solution
y (t )=e−2t+ (t−1)e−t

A single pole is observed at s=−2 and a double pole is observed at s=−1 . Splitting the 
denominator of the Laplace transform into pieces through partial fraction decomposition 
produces terms that resemble the functions f ( t )=e−2t , g ( t )=−e−t , and h ( t )=te−t .
Because the function f (t ) moves towards zero more quickly than the other terms, it 
dominates the expression causing decay as t→∞.

Equation H:  
d 2 y
dt 2

+ 2
dy
dt

+ y=e−t y (0)=0 y ' (0)=0

L[ d
2 y
dt 2 ]+ 2 L[ dydt ]+ L [ y ]=L [e−t ]

s2L [ y ]−s y (0)− y ' (0)+ 2 s L [ y ]−2 y (0)+ L [ y ]=L [e−t ]

(s2
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Graph of solution y (t )=
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A triple pole is observed at s=−1 . The solution will resemble f ( t )=t 2e−t with the 
exponential term dominating the function and causing it to quickly increase as t→−∞ and
then decay toward zero as t→∞.

Special Case:  L−1[ dds L [ f ]]
Because of the unfamiliar nature of the operation, functions producing simple 

transforms are used to make general observations regarding the behavior.  In each case the
original function is returned having been multiplied by −t .

f (t )=t

d
ds

(L [ t ] )= d
ds ( 1

s2)=−2( 1

s3)
L−1[−2( 1

s3)]=−t2

L−1[ dds L [ t ]]=−t 2

f (t )=t 2

d
ds

(L [ t2] )= d
ds (2!

s3)=−6( 1

s4)
L−1[−6( 1

s4)]=−t3
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d
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d
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3)

L−1[−2( 1

( s−1)
3)]=−e t t 2
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f ( t )=e t t 2

d
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d
ds ( 2!
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( s−1)
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L−1[ dds L [e t t2 ]]=−et t3



Further investigation into this operation is done by using Leibnetz's Rule for Integrals
and applying it to the definition of a Laplace transform:

d
ds
∫
a

b

f ( s , t )dt=∫
a

b
∂

∂ s
f ( s , t )dt

This expression is used to compute transforms for a for a number of simple functions, with 
an example provided below for the function f (t )=t . In each case the results for these 
calculations are consistent with the original operation and its final values.

f ( t )=t

∫
0

∞
∂

∂ s
t e−st dt=−∫

0

∞

t2 e−st dt

u=t 2 v=
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s
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du=2tdt dv=e−st dt

−∫
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∞

t 2 e−st dt=[ 1
s
t2 e−st]

∞
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−
2
s
∫
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∞
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s
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du=dt dv=e−st dt

−
2
s
∫
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∞

t e−st dt=[ 2
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∞
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1
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∞
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−
0
s
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0
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s3 ]=−

2
s3 if s > 0

d
ds
L [t ]=−

2

s3

A simple function which does not use Laplace transforms is proposed which involves 
simply multiplying the original function by −t . That is:

L−1[ dds L [ f ]]= f (t )⋅(−t )



It is important to note that each time the original operation is applied to a function, in 
addition to being multiplied by −t , the Laplace transform also gains a multiplicity for the 
pole value.  For example:

L [t ]=
1

s2 and L [−t 2 ]=−
2

s3
L [e t t ]= 1

(s−1)
2 and L [−et t2 ]=−

2

( s−1)
3

Conclusion:  A large amount of qualitative information can be obtained simply by observing
the pole values of the Laplace transform for a given function.  In some cases it serves as a 
quick way to identify general behaviors without having to perform the sometimes unwieldy 
calculations required in partial fraction decomposition procedures, while in others it allows 
for important details to be gleaned when a solution for a differential equation cannot be 
produced.

Regarding the special case operation of applying a transform to a function, taking its 
derivative with respect to s , and then inverting the new expression from the s-domain 
back to the t-domain, a consistent pattern was found wherein the function was multiplied by
−t and the transform gained a multiplicity for the same pole value.  Perhaps a practical 

application of this operation would be to apply it to more complicated functions with 
unknown or uncommon transforms as a method used with other mathematical techniques to
find their associated expressions in the s-domain.


