
Programming Challenge 11

1) Briefly define constructor as it relates to a C++ class. When are constructors called/invoked?
A constructor is a special function which belongs to class. It is called automatically when a new object is
instantiated. According to our textbook a constructor is "a member function that is automatically called when
an object of that class is declared. A constructor is used to initialize the values of some or all memeber
variables and to do any other sort of initialization that may be needed" (264, 3rd Edition).

2) What are the two ways that constructors are different from other member functions of a C++
class?
According to our textbook a constructor is defined in the same way as other member functions except that "a
constructor must have the same name as the class" and "a constructor definition cannot return a value" (265,
3rd Edition).

3) Can constructors be overloaded?
Yes, constructors can be overloaded. According to our textbook a constructor can be overloaded just like
any other function (267, 3rd Edition).

4) Write a declaration for a default constructor for the following class.
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

public:
Book();

5) Write a definition for a default constructor for the following class. In the body of the constructor,
initialize to the values authorName("Unknown"), title("No title"), pages (0).
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

Book::Book()
{

authorName = "Unknown";
title = "No title";
pages = 0;

}

6) Write a declaration for an overloaded constructor for the following class. The overloaded
constructor must include parameters for all of the member variables of the class.
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

public:
Book(string authorNameValue, string titleValue, usigned int pagesValue);

7) Write a definition for an overloaded constructor for the following class. Assign the values of the
variables in the body of the function.
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

Book::Book(string authorNameValue, string titleValue, usigned int pagesValue)
{

authorName = authorNameValue;
title = titleValue;
pages = pagesValue;

}

8) Write a definition for an overloaded constructor for the following class. Assign the values of the
variables in the initialization section.
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

Book::Book(string authorNameValue, string titleValue, usigned int pagesValue) :
authorName(authorNameValue), title(titleValue), pages(pagesValue)
{ /* empty */ }

9) Part 1: Write a declaration for an overloaded constructor for the following class. The overloaded
constructor must have the following default arguments for its parameters: authorName ("Unknown"),
title ("No title"), pages (0). Part 2: If this function is implemented, is it possible to also define a default
constructor?
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

public:
Book(string authorNameValue = "Unknown", string titleValue = "No title", unsigned int pagesValue =

0);

No, adding a default constructor when another constructor exists having every parameter set with a default
value would cause a collision to occur during compilation.

10) Can objects of the following class be created, without an explicit declaration/definition of a
constructor?
class Book
{
 private:
 string authorName;
 string title;
 unsigned int pages;
};

Yes. According to our textbook "if you define a class and include absolutely no constructors of any kind, then
a default constructor will be automatically created. This default constructor does not do anything, but it does
give you an uninitialized object of the class type, which can be assigned to a variable of the class type" (271,
3rd Edition).

