VoOoONOOTUVTDED WN R

27

33

34

35

36
37
38
39
40
41
42
43
44
45
46

~
*

* Class name: SmugglerShip (header file)

* Class description: Class definition for the type SmugglerShip. SmugglerShip objects represent a ship for a game
* having a captain, cargo holds, money, ship name, etc. Instances of this class are used to define different
* types of ships with unique properties and attributes.

*

* Programmer: Chad Philip Johnson

* Date created: February 21st, 2013

* Last date modified: May 10th, 2013

*

* Sources Used:

* tradeitem.h

* - for accomodating created instances of the TradeItem class which the ship will store in its cargo holds
*/

#include <string>
#tinclude "tradeitem.h"
using namespace std;

#ifndef SMUGGLERSHIP_H
#define SMUGGLERSHIP_H

class SmugglerShip

{
public:

/*¥*¥*¥*¥* constructor/destructor declarations *****/

/**

* Default constructor for the SmugglerShip class. Performs the following assignments: the string "No Name" to the
variable strCaptainName,

* the string "SS Smuggler" to the variable strShipName, the value 5 to the variable uintlLegalCargoCapacity, a dynamic
array of size

* uintLegalCargoCapacity to the pointer objTradeIltemLegalCargo, the value 5 to the variable uintlLegalCargoCapacity, a
dynamic array of size

* uintIllegalCargoCapacity to the pointer objTradeItemIllegalCargo, the value @ to the variable uintLegalCargoUsed, the
value @ to the

* variable uintIllegalCargoUsed, the value 100 to the variable uintAstros.

*/
SmugglerShip();

/**

* Overloaded constructor for the SmugglerShip class.

* @param strCaptainName string representing the name of the captain of the ship.

* @param strShipName string representing the name of the ship.

@param uintlLegalCargoCapacity unsigned int representing the maximum legal cargo capacity of the ship.
@param uintIllegalCargoCapacity unsigned int representing the maximum illegal cargo capacity of the ship.
@param uintAstros unsigned int representing the amount of astros (or currency) onboard the ship.

* % ¥

47
48

49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

73
74
75
76
77
78
79
80
81

82
83
84

85
86
87
88
89
90

*/
SmugglerShip(string strCaptainName, string strShipName, unsigned int uintLegalCargoCapacity, unsigned int
uintIllegalCargoCapacity, unsigned int uintAstros);

/**
* Destructor for the SmugglerShip class. Frees the memory associated with the objTradeItemLegalCargo and
objTradeItemIllegalCargo pointers.
*/

~SmugglerShip();

[¥*¥*¥*¥* public function definitions ****x/

/**
* Adds astros (or currency) to the current number of astros held by the ship.
* @param uintNumberOfAstros unsigned int representing the amount of astros to be added to the current total.
*/

void addAstros(unsigned int uintNumberOfAstros);

/**

* Remove an amount of astros from the current number of astros held by the ship.

* @param uintNumberOfAstros unsigned int representing the number of astros to be removed from the ship.

* @return true when the ship has more astros than the requested amount; false when the ship does not have enough.
*/
bool spendAstros(unsigned int uintNumberOfAstros);

/**

* Checks the supplied cargo type and returns the ships maximum capacity for that cargo type. (NOTE: This function

allows for additional

* conditions to be checked before calling the private function fulfillCargoCapacity() which fulfills the request.
Currently no

* additional conditions have been implemented.)

* @param charCargoType Character value representing the type of cargo to be checked; available values are 'i' and
* illegal cargo, 'l' and 'L' for legal cargo

* @return unsigned int value representing the maximum capacity for a cargo type.

*/
unsigned int getCapacity(const char &charCargoType) const;

/**
* Add object of type TradeItem to the ship. (NOTE: This function allows for additional conditions to be checked
before calling the private

* function fulfillAddCargo() which fulfills the request. Currently no additional conditions have been implemented.)

* @param objTradeItemCargoIltem The instance of TradeItem to be added to the ship's cargo.

* @param charCargoType Character value representing the type of cargo that is being added; available values are
'I' for

* illegal cargo, 'l' and 'L' for legal cargo

* @return true when addition of cargo was successful (room available); false on failure (no room available)

*/
bool addCargo(const TradeItem &objTradeItemCargoItem, const char &charCargoType);

/**

'i

'T' for

and

91

92

93
94

95
96
97
98
99
100
lo1

102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

* Checks to see whether a cargo space in the ship is filled or vacant. (NOTE: This function allows for additional
conditions to be checked

* before calling the private function fulfillCheckCargo() which fulfills the request. Currently no additional
conditions have been implemented.)

* @param uintCargoIndex unsigned int value representing the array index to be checked.

* @param charCargoType char representing the type of cargo to be checked; available values are 'i' and 'I' for illegal

cargo, 'l' and 'L' for
* legal cargo
* @return the instance of TradeItem held at that location.
*/
TradeItem& checkCargo(const unsigned int &uintCargoIndex, const char &charCargoType);

/**

* Removes cargo from the ship. (NOTE: This function allows for additional conditions to be checked before calling the

private function
* fulfillRemoveCargo() which fulfills the request. Currently no additional conditions have been implemented.)
* @param uintCargoIndex unsigned int value representing the array index to be checked.

* @param charCargoType char representing the type of cargo to be checked; available values are 'i' and 'I' for illegal

cargo, 'l' and 'L' for
* legal cargo
* @return the instance of TradeItem that was removed from the ship.
*/
TradeItem removeCargo(const unsigned int &uintCargoIndex, const char &charCargoType);

/*¥*¥*¥*¥* gccessor/mutator function declarations *****/

/**

* Accessor function for the strCaptainName variable. Retrieve the name of the ship's captain.
* @return string value for the variable strCaptainName.

*/

string getCaptainName() const;

/**
* Mutator function for the strCaptainName variable. Change the name of the ship's captain.
* @param strCaptainName The new string value for the name of the ship's captain.
*/

void setCaptainName(string strCaptainName);

/**

* Accessor function for the strShipName variable. Retrieve the name of the ship.
* @return string value for the variable strShipName

*/

string getShipName() const;

/**
* Mutator function for the strShipName variable. Change the name of the ship.
* @param strShipName The new string value for the name of the ship.
*/

void setShipName(string strShipName);

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160

161
162

163
164
165
166
167
168
169
170
171

172

173
174
175
176
177
178
179

/**

* Accessor function for the uintAstros variable. Retrieve the current number of astros held by the ship.
* @return unsigned int value for the variable uintAstros.

*/

unsigned int getAstros() const;

/**
* Mutator function for the uintAstros variable. Change the current number of astros held by the ship.
* @param uintAstros The new unsigned int value for the amount of astros held by the ship.
*/

void setAstros(unsigned int uintAstros);

private:

/¥*¥*¥** private function declarations *****/

/**

* Reports the ships maximum storage capacity for either legal or illegal cargo.

* @param charCargoType The type of of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L’
for legal cargo

* @return unsigned int value for the variable uintIllegalCargoCapacity or uintlLegalCargoCapacity.

*/

unsigned int fulfillCargoCapacity(const char &charCargoType) const;

/**

* Checks to see whether there is room in the ship for a new piece of cargo to be added. Adds the cargo only if room
exists.

* @param objTradeItemCargoItem TradeItem object to be added to the ship.

* @param charCargoType char value to specifiy which type of cargo to add; acceptable values are
cargo, 'l' and 'L’

* for legal cargo

* @return true of addition of cargo was successful, false if not.

*/

bool fulfillAddCargo(const TradeItem &objTradeItemCargoItem, const char &charCargoType);

i' and 'I' for illegal

/**
* Reports whether a cargo storage location is filled or vacant.
* @param uintCargoIndex Storage location to check.
* @param charCargoType The type of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L' for
legal cargo
* @return The TradeItem object if the storage location contains cargo, or a "junk" item if the space is empty or does
not exist.
*/
TradeItem& fulfillCheckCargo(const unsigned &uintCargoIndex, const char &charCargoType);

/**

* Remove cargo from a storage location within the ship if that location contains cargo.

* @param uintCargoIndex Storage location to check.

* @param charCargoType The type of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L' for
legal cargo

180

181
182
183
184
185
186
187
188
189
190
191

* @return The TradeItem object if the storage location contains cargo, or a "junk" item if the space is empty or does
not exist.
*/

TradeItem fulfillRemoveCargo(const unsigned &uintCargoIndex, const char &charCargoType);

/¥¥*¥*¥* private variable declarations *****/

}s

#tendif

string strCaptainName, strShipName;
unsigned int uintAstros, uintlLegalCargoCapacity, uintlLegalCargoUsed, uintIllegalCargoCapacity, uintIllegalCargoUsed;
TradeItem objTradeItemJunk, *objTradeItemLegalCargo, *objTradeItemIllegalCargo;

