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*

* Class name: SmugglerShip (header file)

* Class description: Class definition for the type SmugglerShip. SmugglerShip objects represent a ship for a game
* having a captain, cargo holds, money, ship name, etc. Instances of this class are used to define different
* types of ships with unique properties and attributes.

*

* Programmer: Chad Philip Johnson

* Date created: February 21st, 2013

* Last date modified: May 10th, 2013

*

* Sources Used:

* tradeitem.h

* - for accomodating created instances of the TradeItem class which the ship will store in its cargo holds
*/

#include <string>
#tinclude "tradeitem.h"
using namespace std;

#ifndef SMUGGLERSHIP_H
#define SMUGGLERSHIP_H

class SmugglerShip

{
public:

/*¥*¥*¥*¥* constructor/destructor declarations *****/

/**

* Default constructor for the SmugglerShip class. Performs the following assignments: the string "No Name" to the
variable strCaptainName,

* the string "SS Smuggler" to the variable strShipName, the value 5 to the variable uintlLegalCargoCapacity, a dynamic
array of size

* uintLegalCargoCapacity to the pointer objTradeIltemLegalCargo, the value 5 to the variable uintlLegalCargoCapacity, a
dynamic array of size

* uintIllegalCargoCapacity to the pointer objTradeItemIllegalCargo, the value @ to the variable uintLegalCargoUsed, the
value @ to the

* variable uintIllegalCargoUsed, the value 100 to the variable uintAstros.

*/
SmugglerShip();

/**

* Overloaded constructor for the SmugglerShip class.

* @param strCaptainName string representing the name of the captain of the ship.

* @param strShipName string representing the name of the ship.

@param uintlLegalCargoCapacity unsigned int representing the maximum legal cargo capacity of the ship.
@param uintIllegalCargoCapacity unsigned int representing the maximum illegal cargo capacity of the ship.
@param uintAstros unsigned int representing the amount of astros (or currency) onboard the ship.
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*/
SmugglerShip( string strCaptainName, string strShipName, unsigned int uintLegalCargoCapacity, unsigned int
uintIllegalCargoCapacity, unsigned int uintAstros );

/**
* Destructor for the SmugglerShip class. Frees the memory associated with the objTradeItemLegalCargo and
objTradeItemIllegalCargo pointers.
*/

~SmugglerShip();

[¥*¥*¥*¥* public function definitions ****x/

/**
* Adds astros (or currency) to the current number of astros held by the ship.
* @param uintNumberOfAstros unsigned int representing the amount of astros to be added to the current total.
*/

void addAstros( unsigned int uintNumberOfAstros );

/**

* Remove an amount of astros from the current number of astros held by the ship.

* @param uintNumberOfAstros unsigned int representing the number of astros to be removed from the ship.

* @return true when the ship has more astros than the requested amount; false when the ship does not have enough.
*/
bool spendAstros( unsigned int uintNumberOfAstros );

/**

* Checks the supplied cargo type and returns the ships maximum capacity for that cargo type. (NOTE: This function

allows for additional

* conditions to be checked before calling the private function fulfillCargoCapacity() which fulfills the request.
Currently no

* additional conditions have been implemented.)

* @param charCargoType Character value representing the type of cargo to be checked; available values are 'i' and
* illegal cargo, 'l' and 'L' for legal cargo

* @return unsigned int value representing the maximum capacity for a cargo type.

*/
unsigned int getCapacity( const char &charCargoType ) const;

/**
* Add object of type TradeItem to the ship. (NOTE: This function allows for additional conditions to be checked
before calling the private

* function fulfillAddCargo() which fulfills the request. Currently no additional conditions have been implemented.)

* @param objTradeItemCargoIltem The instance of TradeItem to be added to the ship's cargo.

* @param charCargoType Character value representing the type of cargo that is being added; available values are
'I' for

* illegal cargo, 'l' and 'L' for legal cargo

* @return true when addition of cargo was successful (room available); false on failure (no room available)

*/
bool addCargo( const TradeItem &objTradeItemCargoItem, const char &charCargoType );

/**

'i

'T' for
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* Checks to see whether a cargo space in the ship is filled or vacant. (NOTE: This function allows for additional
conditions to be checked

* before calling the private function fulfillCheckCargo() which fulfills the request. Currently no additional
conditions have been implemented.)

* @param uintCargoIndex unsigned int value representing the array index to be checked.

* @param charCargoType char representing the type of cargo to be checked; available values are 'i' and 'I' for illegal

cargo, 'l' and 'L' for
* legal cargo
* @return the instance of TradeItem held at that location.
*/
TradeItem& checkCargo( const unsigned int &uintCargoIndex, const char &charCargoType );

/**

* Removes cargo from the ship. (NOTE: This function allows for additional conditions to be checked before calling the

private function
* fulfillRemoveCargo() which fulfills the request. Currently no additional conditions have been implemented.)
* @param uintCargoIndex unsigned int value representing the array index to be checked.

* @param charCargoType char representing the type of cargo to be checked; available values are 'i' and 'I' for illegal

cargo, 'l' and 'L' for
* legal cargo
* @return the instance of TradeItem that was removed from the ship.
*/
TradeItem removeCargo( const unsigned int &uintCargoIndex, const char &charCargoType );

/*¥*¥*¥*¥* gccessor/mutator function declarations *****/

/**

* Accessor function for the strCaptainName variable. Retrieve the name of the ship's captain.
* @return string value for the variable strCaptainName.

*/

string getCaptainName() const;

/**
* Mutator function for the strCaptainName variable. Change the name of the ship's captain.
* @param strCaptainName The new string value for the name of the ship's captain.
*/

void setCaptainName( string strCaptainName );

/**

* Accessor function for the strShipName variable. Retrieve the name of the ship.
* @return string value for the variable strShipName

*/

string getShipName() const;

/**
* Mutator function for the strShipName variable. Change the name of the ship.
* @param strShipName The new string value for the name of the ship.
*/

void setShipName( string strShipName );
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/**

* Accessor function for the uintAstros variable. Retrieve the current number of astros held by the ship.
* @return unsigned int value for the variable uintAstros.

*/

unsigned int getAstros() const;

/**
* Mutator function for the uintAstros variable. Change the current number of astros held by the ship.
* @param uintAstros The new unsigned int value for the amount of astros held by the ship.
*/

void setAstros( unsigned int uintAstros );

private:

/¥*¥*¥** private function declarations *****/

/**

* Reports the ships maximum storage capacity for either legal or illegal cargo.

* @param charCargoType The type of of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L’
for legal cargo

* @return unsigned int value for the variable uintIllegalCargoCapacity or uintlLegalCargoCapacity.

*/

unsigned int fulfillCargoCapacity( const char &charCargoType ) const;

/**

* Checks to see whether there is room in the ship for a new piece of cargo to be added. Adds the cargo only if room
exists.

* @param objTradeItemCargoItem TradeItem object to be added to the ship.

* @param charCargoType char value to specifiy which type of cargo to add; acceptable values are
cargo, 'l' and 'L’

* for legal cargo

* @return true of addition of cargo was successful, false if not.

*/

bool fulfillAddCargo( const TradeItem &objTradeItemCargoItem, const char &charCargoType );

i' and 'I' for illegal

/**
* Reports whether a cargo storage location is filled or vacant.
* @param uintCargoIndex Storage location to check.
* @param charCargoType The type of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L' for
legal cargo
* @return The TradeItem object if the storage location contains cargo, or a "junk" item if the space is empty or does
not exist.
*/
TradeItem& fulfillCheckCargo( const unsigned &uintCargoIndex, const char &charCargoType );

/**

* Remove cargo from a storage location within the ship if that location contains cargo.

* @param uintCargoIndex Storage location to check.

* @param charCargoType The type of cargo to check; acceptable values are 'i' and 'I' for illegal cargo, 'l' and 'L' for
legal cargo
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* @return The TradeItem object if the storage location contains cargo, or a "junk" item if the space is empty or does
not exist.
*/

TradeItem fulfillRemoveCargo( const unsigned &uintCargoIndex, const char &charCargoType );

/¥¥*¥*¥* private variable declarations *****/

}s

#tendif

string strCaptainName, strShipName;
unsigned int uintAstros, uintlLegalCargoCapacity, uintlLegalCargoUsed, uintIllegalCargoCapacity, uintIllegalCargoUsed;
TradeItem objTradeItemJunk, *objTradeItemLegalCargo, *objTradeItemIllegalCargo;



