VLCoOoONOTUVTE WNR

23

~
*

* Class name: Word.h

* Class description: Allows the use of strings as values for the BSTree binary search tree.
*

* Programmer: Chad Philip Johnson

* Date Created: Friday, April 26th, 2013

* Last Date Modified: Thursday, May @9th, 2013

*

* Sources Used:

* N/A

*/

#include <string>
#tinclude <iostream>

using namespace std;

#ifndef WORD_H
#define WORD_H

class Word

{
public:

/**
* Default constructor for the Word class. Set count to 1.
*/

Word();

/**
* Overloaded constructor for the Word class. Set count to 1 and assign the passed value to
* the string variable representing the word value of the object.
* @param strWord The string value to be held by the object.
*/

Word(string strWord);

/**
* Destructor for the Word class. Currently unused.
*/

virtual ~Word();

/**
* Overloaded output operator converts the word to uppercase (if not already uppercase) and feeds
* it to an output stream.

* @param objostreamOut The output stream to receive the value.
* @param objWordToOutput The word object to have its value sent to the output stream.
*/

friend ostream& operator << (ostream& objostreamOut, const Word*& objWordToOutput);

/**
* Overloaded equal comparison operator checks whether two Word objects contain the same values.

51 * @param objWordCompare The Word object value to be compared with the current object value.
52 */

53 bool operator == (Word& objWordCompare);

54

55 /**

56 * Overloaded less than operator checks whether the right object value is greater than the current object value.
57 * @param objWordCompare The Word object value to be compared with the current object value.
58 */

59 bool operator < (Word& objWordCompare);

60

61 /**

62 * Overloaded greater than operator checks whether the right object is less than the current object value.
63 * @param objWordCompare The Word object value to be compared with the current object value.
64 */

65 bool operator > (Word& objWordCompare);

66

67 /**

68 * Return the value of the word contained within the Word object.

69 * @return String value of the word.

70 */

71 string getWord() const;

72

73 /**

74 * Return the value of the word contained within the Word object (has the same use as the getWord function but
75 * is a generic function name for Word class compatability with templated trees).

76 * @return String value of the word.

77 */

78 string getValue() const;

79

81 * Change the value of the word contained within the Word object.

82 * @param strWord The new value of the word.

83 */

84 void setWord(string strWord);

85

87 * Get the number of times the word value has been added to the tree.

88 * @return The unsigned int value of the number of times the word has been added to the tree.
89 */

90 unsigned int getCount() const;

91

93 * Increase the count by one (count represents the number of times the word value of the object has been added to a tree).
94 */

95 void incrementCount();

96

97 private:

98 string strWord;

99 unsigned int uintCount;

100 };

101
102 #tendif
103

