
1 /*
2 * Programmer: Chad Philip Johnson
3 * Date Created: Wednesday, October 03rd, 2012
4 * Date of Last Modification: Thursday, October 04th, 2012
5 *
6 * Description:
7 * Assistant.class provides a few features that an incredibly
8 * basic assistant application would have. It offers the
9 * following text-based tools and games: a gas mileage

10 * calculator, a to-do list composer, a grade calculator, a
11 * number guessing game, and the classic grade-school game of
12 * Hangman.
13 */
14
15 import java.util.*;
16
17 /**
18 * Assistant.class provides a few features that an incredibly
19 * basic assistant application would have. It offers the
20 * following text-based tools and games: a gas mileage
21 * calculator, a to-do list composer, a grade calculator, a
22 * number guessing game, and the classic grade-school game of
23 * Hangman.
24 *
25 * @author Chad Philip Johnson
26 * @version 1.0
27 */
28
29 public class Assistant {
30
31 CinReader driverKeyboard;
32 Random rand;
33
34 // Number of different joke categories; increase this value for each new joke category added
35 static final int NUMBER_OF_JOKE_CATEGORIES = 3;
36 // Max number of test scores allowed for the grade calculator
37 static final int MAX_NUMBER_OF_TESTS = 20;
38 // Max number of tries when playing the number guessing game
39 static final int NUMBER_GUESS_MAX_TRIES = 10;
40 // Max number of tries when playing Hangman
41 static final int HANGMAN_MAX_TRIES = 10;
42
43 /**
44 * Default constructor:
45 * Instantiate CinReader.class and Random.class and associate them with the current instance of Assistant.class
46 */
47 Assistant() {
48
49 // Instantiate CinReader.class and associate it with the current instance of Assistant.class
50 this.driverKeyboard = new CinReader();

51 // Instantiate Random.class and associate it with the current instance of Assistant.class
52 this.rand = new Random();
53
54 }
55
56 /**
57 * Print a random joke from a number of categories
58 */
59 public void randomJoke() {
60
61 // Select a joke category randomly
62 int intSelectJokeCategory = (rand.nextInt(1000) % NUMBER_OF_JOKE_CATEGORIES);
63 String strCurrentJoke = "";
64
65 switch(intSelectJokeCategory) {
66 // Random jokes
67 case 0:
68 strCurrentJoke = getARandomStupidJoke();
69 break;
70
71 // Dennis Miller Monday Night Football quotes
72 case 1:
73 strCurrentJoke = getADennisMillerMNFQuote() + "\n--Dennis Miller, Monday Night Football";
74 break;
75
76 // Blind jokes
77 case 2:
78 strCurrentJoke = getABlindJoke();
79 break;
80
81 // Default is random jokes
82 default:
83 strCurrentJoke = getARandomStupidJoke();
84
85 }
86
87 System.out.print(strCurrentJoke + "\n\n");
88
89 }
90
91 /**
92 * Calculate miles per gallon based on user input
93 */
94 public void mileageCalculator() {
95
96 // Continue subroutine set to true by default
97 boolean blnContinue = true;
98 double dblMilesDriven, dblGallonsUsed;
99

100 System.out.print("\nWelcome to the Mileage Calculator!\n\n");

101
102 // Continue subroutine until user decides to exit to the main menu
103 while(blnContinue) {
104
105 // Continue user input until a valid number is received (must be zero or greater)
106 while(true) {
107
108 System.out.print("How many miles did you drive? ");
109 dblMilesDriven = driverKeyboard.readDouble();
110
111 if(dblMilesDriven < 0) {
112 // Print error message and restart the loop
113 System.out.println("This number cannot be negative. Please re-enter.");
114 continue;
115
116 } else {
117 // Exit loop when a valid entry has been received
118 break;
119
120 }
121
122 };
123
124 // Continue user input until a valid number is received (must be greater than zero)
125 while(true) {
126
127 System.out.print("How many gallons of gas did your car use to go that distance? ");
128 dblGallonsUsed = driverKeyboard.readDouble();
129
130 if(dblGallonsUsed <= 0) {
131 // Print error message and restart the loop
132 System.out.println("This number cannot be negative or zero. Please re-enter.");
133 continue;
134
135 } else {
136 // Exit loop when a valid entry has been received
137 break;
138
139 }
140
141 }
142
143 // Compute and print mpg
144 System.out.printf("You car averaged %.2f miles per gallon.\n\n", (float) (dblMilesDriven / dblGallonsUsed));
145
146 // Prompt user to do another calculation
147 System.out.println("Would you like to do another gas mileage calculation? (y/n)");
148
149 // Restart subroutine if true; exit to main menu if false
150 blnContinue = continueSubroutine();

151
152 }
153
154 }
155
156 /**
157 * Create a simple to-do list from user input
158 */
159 public void toDoList() {
160
161 // Continue subroutine set to true by default
162 boolean blnContinue = true;
163 int intCounter = 0;
164 LinkedList<String> myToDoList = new LinkedList<String>();
165
166 System.out.print("\nWelcome to the To-Do List Organizer!\n\n");
167
168 // Continue subroutine until user decides to exit to the main menu
169 while(blnContinue) {
170
171 // Accept a string as input from the user
172 System.out.println("Please add an entry to your To-Do List:");
173 myToDoList.add(driverKeyboard.readString());
174
175 // Display current to-do list
176 showToDoList(myToDoList);
177
178 // Prompt user to make more entires
179 System.out.println("Would you like to make another entry? (y/n)");
180 blnContinue = continueSubroutine();
181
182 }
183
184 // Print final to-do list
185 showToDoList(myToDoList);
186
187 // Warn user that the data is about to be lost
188 System.out.println("You might want to write this list down because it's about to disappear!");
189 // Wait till user presses enter
190 System.out.println("Please press [Enter] to continue...");
191 Scanner keyboard = new Scanner(System.in);
192 keyboard.nextLine();
193
194 }
195
196 /**
197 * Calculate an average grade from a user specified number of test scores
198 */
199 public void gradeCalculator() {
200

201 // Continue subroutine set to true by default
202 boolean blnContinue = true;
203 int intNumberOfTests;
204 int intNumberOfPointsEarned, intMaxExamPoints;
205
206 System.out.print("\nWelcome to the Grade Calculator!\n\n");
207
208 // Continue subroutine until user decides to exit to the main menu
209 while(blnContinue) {
210
211 // Reset values each time user decides to calculate a new average score
212 intNumberOfPointsEarned = 0;
213 intMaxExamPoints = 0;
214
215 // Continue user input until a valid number is received (must be greater than zero)
216 while(true) {
217
218 System.out.print("How many tests would you like to input to find your current average? ");
219 intNumberOfTests = driverKeyboard.readInt();
220
221 if(intNumberOfTests > 0 && intNumberOfTests <= MAX_NUMBER_OF_TESTS) {
222 // Exit loop when a valid value has been received
223 break;
224
225 } else if(intNumberOfTests > MAX_NUMBER_OF_TESTS) {
226 // Display warning message and restart loop if the number of tests to be entered exceeds the boundaries of

the program
227 System.out.printf("I'm sorry, you can only input a maximum of %d different test scores.\n" ,

MAX_NUMBER_OF_TESTS);
228 continue;
229
230 } else if(intNumberOfTests <= 0) {
231 // Display warning message and restart loop if an invalid value has been received
232 System.out.println("I'm sorry, the number of tests cannot be negative or zero.");
233 continue;
234
235 }
236
237 }
238
239 for(int i = 1; i <= intNumberOfTests; i++) {
240
241 int intTempPointsEarned, intTempMaxExamPoints;
242
243 // Continue user input until a valid number is received (must be greater than or equal to zero)
244 while(true) {
245 System.out.printf("Please input the points earned for exam #%d: ", i);
246 intTempPointsEarned = driverKeyboard.readInt();
247
248 if(intTempPointsEarned >= 0) {

249 // Exit loop when a valid value has been received
250 break;
251
252 } else {
253 // Display warning message and restart loop if an invalid value has been received
254 System.out.println("I'm sorry (not really, you moron), the points earned cannot be negative.");
255 continue;
256
257 }
258
259 }
260
261 // Tally the total points earned with each pass
262 intNumberOfPointsEarned += intTempPointsEarned;
263
264 // Continue user input until a valid number is received (must be greater than or equal to zero)
265 while(true) {
266 System.out.printf("Please input the maximum points for exam #%d: ", i);
267 intTempMaxExamPoints = driverKeyboard.readInt();
268
269 if(intTempMaxExamPoints >= 0) {
270 // Exit loop when a valid value has been received
271 break;
272
273 } else {
274 // Display warning message and restart loop if an invalid value has been received
275 System.out.println("You idiot, the points earned cannot be negative.");
276
277 }
278
279 }
280
281 // Tally the total points available with each pass
282 intMaxExamPoints += intTempMaxExamPoints;
283
284 }
285
286 // Perform average calculation, print result and offer an encouraging message
287 System.out.printf("\nYou earned %d out of %d total points which represents an average of %.2f%%. Good job!\n\n" ,

intNumberOfPointsEarned, intMaxExamPoints, (((float) intNumberOfPointsEarned / (float) intMaxExamPoints) * 100.0f));
288
289 // Prompt user to perform another grade calculation
290 System.out.println("Would you like to calculate another average? (y/n)");
291 blnContinue = continueSubroutine();
292
293 }
294
295 System.out.println("Thanks for using the Grade Calculator!");
296
297 }

298
299 /**
300 * Play a number guessing game
301 */
302 public void numberGame() {
303
304 // Continue subroutine set to true by default
305 boolean blnContinue = true;
306 int intUserInput;
307 int intSecretNumber;
308
309 System.out.print("\n\nWelcome to the Number Guessing Game!\n\n");
310 System.out.println("You must guess the correct number between 1 and 100 in ten tries.");
311
312 // Continue subroutine until user decides to exit to the main menu
313 while(blnContinue) {
314
315 // Find a random number between 1 and 100
316 intSecretNumber = rand.nextInt(100) + 1;
317
318 System.out.print("\nThe secret number is between 1 and 100. What do you think it is? ");
319
320 // Continue game until max tries have all been used up
321 for(int i = 1; i <= NUMBER_GUESS_MAX_TRIES; i++) {
322
323 // Continue user input until a valid number is received (must be between 1 and 100)
324 while(true) {
325 intUserInput = driverKeyboard.readInt();
326
327 if(intUserInput > 100 || intUserInput <= 0) {
328 System.out.println("Oops! The number must be between 1 and 100. Try again!");
329 continue;
330
331 } else {
332 // Exit loop when a valid value has been received
333 break;
334
335 }
336
337 }
338
339 // If guessed number matches secret number, print victory message and exit game loop
340 if(intUserInput == intSecretNumber) {
341 System.out.printf("\nCongratulations! You win! You found the secret number %d in %d tries!\n\n" ,

intSecretNumber, i);
342 break;
343
344 } else {
345
346 // If guessed number is too high, print "too high" message

347 if(intUserInput > intSecretNumber) {
348 System.out.printf("\nThe number %d is too high! Guess lower!\n", intUserInput);
349
350 // If guessed number is too low, print "too low" message
351 } else if(intUserInput < intSecretNumber) {
352 System.out.printf("\nThe number %d is too low! Guess higher!", intUserInput);
353
354 }
355
356 // Print the number of tries remaining
357 if((NUMBER_GUESS_MAX_TRIES - i) > 1) {
358 System.out.printf("\nYou have only %d tries left!\n", (NUMBER_GUESS_MAX_TRIES - i));
359
360 } else if((NUMBER_GUESS_MAX_TRIES - i) == 1) {
361 System.out.println("\nYou have only 1 try left!\n");
362
363 } else {
364 System.out.printf("\nOh no! You're all out of tries! The secret number was %d.\n" , (

NUMBER_GUESS_MAX_TRIES - i), intSecretNumber);
365
366 }
367
368 }
369
370 }
371
372 // Print game over message and prompt user to play again
373 System.out.println("Game Over. Would you like to play again? (y/n)");
374 blnContinue = continueSubroutine();
375
376 }
377
378 System.out.println("Thanks for playing the number guessing game!");
379
380 }
381
382 /**
383 * Play a game of Hangman
384 */
385 public void hangmanGame() {
386
387 // Continue subroutine set to true by default
388 boolean blnContinue = true;
389 char chrUserInput;
390
391 System.out.print("\n\nWelcome to Hangman!\n");
392
393 // Continue subroutine until user decides to exit to the main menu
394 while(blnContinue) {
395

396 // Retrieve random word for the current game
397 char[] chrCurrentWord = getAWordForHangman().toCharArray();
398 // Create a "blank" word of the same length as the secret word
399 char[] chrEmptyWord = new char[chrCurrentWord.length];
400
401 // Blank out the "blank" word with underscores
402 for(int i = 0; i < chrCurrentWord.length; i++) {
403 chrEmptyWord[i] = '_';
404
405 }
406
407 System.out.print("\nGuess the secret word in ten tries or less!\n");
408
409 int intNumberOfTries = 0;
410 boolean blnLetterExists;
411 while(true) {
412
413 // Guessed letter does not exist, by default
414 blnLetterExists = false;
415
416 // Show player's current progress with each pass
417 hangmanShowPlayerProgress(chrEmptyWord, chrCurrentWord.length, intNumberOfTries);
418
419 // Continue user input until a valid number is received (must be between a-z or A-Z)
420 while(true) {
421
422 System.out.print("What letter would you like to guess? ");
423 chrUserInput = driverKeyboard.readChar();
424
425 // Valid input of ASCII set a-z
426 if(chrUserInput >= 97 && chrUserInput <= 122) {
427 break;
428
429 // Valid input of ASCII set A-Z, convert to lowercase
430 } else if(chrUserInput >= 65 && chrUserInput <= 90) {
431 chrUserInput += 32;
432 break;
433
434 // Invalid character: must be a letter
435 } else {
436 System.out.printf("The character %c is invalid. Please retry.\n", chrUserInput);
437 continue;
438
439 }
440
441 }
442
443 // Compare guessed letter with all letters in secret word
444 for(int i = 0; i < chrCurrentWord.length; i++) {
445

446 // If the guessed letter matches any letters of the secret word, update the "blank" word with that character
at the same array position

447 // (test fails if the same correct letter is used more than once)
448 if(chrCurrentWord[i] == chrUserInput && chrEmptyWord[i] != chrUserInput) {
449 // Assign character value to current position of "blank" word
450 chrEmptyWord[i] = chrUserInput;
451 // Set flag that the user has guessed a correct letter
452 blnLetterExists = true;
453
454 }
455
456 }
457
458 // If the user has not guessed correctly increment the total number of attempts by one
459 if(blnLetterExists == false) {
460 intNumberOfTries++;
461
462 }
463
464 // Print victory message if the user has successfully guessed the word
465 if(Arrays.equals(chrCurrentWord, chrEmptyWord)) {
466 System.out.printf("Congratulations, you guessed the correct word and had %d tries remaining!\n\n" , (

HANGMAN_MAX_TRIES - intNumberOfTries));
467 hangmanShowPlayerProgress(chrEmptyWord, chrCurrentWord.length, intNumberOfTries);
468 System.out.printf("The secret word was \"%s\".\n\n", new String(chrCurrentWord));
469 break;
470
471 }
472
473 // Print "successful" message when a letter has been guessed; print the number of tries left
474 if(blnLetterExists == true) {
475
476 System.out.printf("Way to go! The letter \"%c\" appears in the secret word.\n" , chrUserInput);
477
478 if((HANGMAN_MAX_TRIES - intNumberOfTries) > 1) {
479 System.out.printf("You still have %d tries left!\n", (HANGMAN_MAX_TRIES - intNumberOfTries));
480
481 } else {
482 System.out.println("Oh no! You have only one try left!");
483
484 }
485
486 }
487
488 // Print "unsuccessful" message when a letter has not been guessed; increment the number of attempts and print

the number of tries left
489 if(blnLetterExists == false) {
490
491 if((HANGMAN_MAX_TRIES - intNumberOfTries) > 1) {
492 System.out.printf("No luck on that one. You have %d tries left!\n", (HANGMAN_MAX_TRIES -

intNumberOfTries));
493
494 } else if((HANGMAN_MAX_TRIES - intNumberOfTries) == 1) {
495 System.out.println("Now you've done it... You have only one try left!");
496
497 // Exit game loop when the number of tries reaches zero
498 } else {
499 System.out.println("You lose! Game Over!");
500 hangmanShowPlayerProgress(chrEmptyWord, chrCurrentWord.length, intNumberOfTries);
501 System.out.printf("The secret word was \"%s\".\n\n", new String(chrCurrentWord));
502 break;
503
504 }
505
506 }
507
508 }
509
510 // Prompt user to play again
511 System.out.println("Would you like to play again? (y/n)");
512 blnContinue = continueSubroutine();
513
514 }
515
516 }
517
518 /**
519 * Return a joke from the list of random stupid jokes
520 */
521 public String getARandomStupidJoke() {
522
523 String[] randomStupidJokes = new String[] {
524 "I have the power to channel my imagination into ever-soaring levels of\nsuspicion and paranoia." ,
525 "I assume full responsibility for my actions, except the ones that are someone\nelse's fault." ,
526 "I no longer need to punish, deceive, or compromise myself. Unless, of course,\nI want to stay employed." ,
527 "Having control over myself is nearly as good as having control over others." ,
528 "My intuition nearly makes up for my lack of good judgment." ,
529 "I honor my personality flaws, for without them I would have no personality at\nall." ,
530 "I am grateful that I am not as judgmental as all those censorious,\nself-righteous people around me." ,
531 "I need not suffer in silence while I can still moan, whimper, and complain." ,
532 "As I learn the innermost secrets of the people around me, they reward me in\nmany ways to keep me quiet." ,
533 "When someone hurts me, forgiveness is cheaper than a lawsuit. But not nearly\nas gratifying." ,
534 "The first step is to say nice things about myself. The second, to do nice\nthings for myself. The third, to find

someone to buy me nice things.",
535 "As I learn to trust the universe, I no longer need to carry a gun." ,
536 "I am at one with my duality.",
537 "Blessed are the flexible, for they can tie themselves into knots." ,
538 "Only a lack of imagination saves me from immobilizing myself with imaginary\nfears." ,
539 "Does my quiet self-pity get to you or should I move up to incessant nagging?" ,
540 "Today I will gladly share my experience and advice, for there are no sweeter\nwords than \"I told you so.\"" ,

541 "False hope is nicer than no hope at all.",
542 "A good scapegoat is nearly as welcome as a solution to the problem." ,
543 "Just for today, I will not sit in my living room all day watching TV. Instead\nI will move my TV into the bedroom." ,
544 "Who can I blame for my own problems? Give me just a minute... I'll find someone." ,
545 "The complete lack of evidence is the surest sign that the conspiracy is working." ,
546 "I am learning that criticism is not nearly as effective as sabotage." ,
547 "Becoming aware of my character defects leads me to the next step - blaming my\nparents." ,
548 "I will find humor in my everyday life by looking for people I can laugh at." ,
549 "The next time the universe knocks on my door, I will pretend I am not home." ,
550 "To have a successful relationship I must learn to make it look like I'm giving\nas much as I'm getting." ,
551 "I am willing to make the mistakes if someone else is willing to learn from them."
552 };
553
554 // Return a random string from the String array
555 return randomStupidJokes[rand.nextInt(randomStupidJokes.length)];
556
557 }
558
559 /**
560 * Return a quote from the list of Dennis Miller Monday Night Football sayings
561 */
562 public String getADennisMillerMNFQuote() {
563
564 String[] dennisMillerMNFQuotes = new String[] {
565 "Of *course* he needs to renegotiate his salary -- the guy buys more snow than\nSeward did when he bought Alaska

from the Russians.",
566 "I haven't seen anyone rely on the ground game this much since the battle of\nVerdun." ,
567 "The quarterback's spending so much time behind the center that he may\njeopardize his right to lead a Boy Scout

troop.",
568 "I've seen women pee standing up with better aim.",
569 "Somebody call Janet Reno -- I think I just saw Donato dragging Doug Flutie\ninto a locker room closet!" ,
570 "That field goal attempt was so far to the left it nearly decapitated Lyndon\nLaRouche." ,
571 "I haven't seen someone so overmatched since Mike Tyson tried to recite the\nalphabet." ,
572 "Hey, Cunningham -- Andy Warhol called. You're at 14:55 and we're tickin'\nbig-time here, Chachi." ,
573 "He lasted about as long as the dessert tray at Rosie O'Donnell's house." ,
574 "Hey Deion, Bubbelah -- maybe you'd better pay a little less attention to\nthose unfairly Draconian salary caps that

only allowed you to acquire four of\nthe five remaining 1932 Aston Martins still in road-worthy condition
after\nyou'd paid for life's little necessities like hookers and weed, get your\nmedulla oblongata out of your
duodenum for a few milliseconds, and make a\ntackle or two, okay, Babe?" ,

575 "When the hell is Warren Moon going to retire? I mean, this guy is older than\nthe cuneiform in Nebuchadnezzar's
tomb.",

576 "That punt was higher than Marion Berry on a fact-finding tour of Cartagena." ,
577 "Nervous? He's tighter than Pat Buchanan's sphincter muscle at a 4th of July\nsoiree on Fire Island." ,
578 "Warner had more hands in his face than an OB-GYN delivering Vishnu's\ntriplets!" ,
579 };
580
581 // Return a random string from the String array
582 return dennisMillerMNFQuotes[rand.nextInt(dennisMillerMNFQuotes.length)];
583
584 }

585
586 /**
587 * Return a joke from the list of blind jokes
588 */
589 public String getABlindJoke() {
590
591 String[] blindJokes = new String[] {
592 "How do you discipline a blind kid? You move the furniture around." ,
593 "A blind man walks into a store with his seeing eye dog. All of a sudden, he\npicks up the leash and begins swinging

the dog over his head. The manager runs\nup to the man and asks, \"What are you doing?!!\" The blind man
replies,\n\"Just looking around.\"",

594 "There are 2 blonds sitting on a porch in Kansas looking at the moon. One\nblond says to the other, \"which do you
think is closer? The moon or Texas?\"\nThe other blond says \"Duh! Can you see Texas?\"" ,

595 "Why don't blind people skydive? It scares the heck out of the dog." ,
596 "Marriage is love. Love is blind. Therefore, marriage is an institution for\nthe blind." ,
597 "What do you call a blind rabbit sitting on your face? An unsightly facial\nhare!" ,
598 "Remember: Pirates with two eye patches are not twice as deadly." ,
599 "Why don't blind people ever watch where they're going?" ,
600 "Why is it that the blind leading the blind always have so many places to go?" ,
601 "Blind people are fun to trip.",
602 "Blind people make wonderful moving targets, especially for paintball practice." ,
603 "What did one blind man say to the other blind man? \"It sure is dark\ntoday.\" To which, the other blind man

replied, \"Yep... sure is...\"",
604 "Don't say \"It's such a beautiful day today!\" to a blind person. It is\ninconsiderate and cruel. Instead do the

right thing and say, \"It isn't a\nvery nice day today.\"" ,
605 "Blind people know that life isn't fair... much more than most." ,
606 "Blind people are cowards. I've never met a blind man that could look me\nin the eyes." ,
607 "Yes, sunglasses are an acceptable gift to give a blind person on his\nbirthday--the darker the shades the better." ,
608 "Blind people are allowed to run with scissors.",
609 "Yes, blind people like blind jokes too, but only when they're wearing\nsunglasses." ,
610 "Blind people can't read these jokes because they aren't written in\nbraille." ,
611 };
612
613 // Return a random string from the String array
614 return blindJokes[rand.nextInt(blindJokes.length)];
615
616 }
617
618 /**
619 * Return a random word for a game of Hangman
620 */
621 private String getAWordForHangman() {
622
623 String[] wordsForHangman = new String[] {
624 "kindergarten",
625 "physics",
626 "calculus",
627 "computer",
628 "chemistry",
629 "biology",

630 "headache",
631 "programming",
632 "compost",
633 "recycle",
634 "prius",
635 "solar",
636 "environmentalist",
637 "battery",
638 "lead",
639 "yuppy",
640 "object",
641 "orient",
642 "beer",
643 "confession",
644 "elementary",
645 "electricity",
646 "magnetism",
647 "potential",
648 "energy",
649 "field",
650 "organic",
651 "potato",
652 "tomato",
653 "tortilla",
654 "quesadilla",
655 "enchilada",
656 "burrito",
657 "salsa",
658 "frijoles",
659 "spanish",
660 "tequila",
661 "wine",
662 "differential",
663 "equation",
664 "architecture",
665 "agression",
666 "foreclosure",
667 "dream",
668 "tiger",
669 "zebra",
670 "africa",
671 "tostada",
672 "finish",
673 };
674
675 // Return a random string from the String array
676 return wordsForHangman[rand.nextInt(wordsForHangman.length)];
677
678 }
679

680 /**
681 * Prompt user whether he/she would like to continue executing a subroutine
682 */
683 private boolean continueSubroutine() {
684
685 // Prompt user for character input
686 char charUserInput = driverKeyboard.readChar();
687
688 // Resume subroutine if input does not equal 'n' or 'N'
689 if(!(charUserInput == 'n' || charUserInput =='N')) {
690 return true;
691
692 // Quit subroutine if input equals 'n' or 'N'
693 } else {
694 return false;
695
696 }
697
698 }
699
700 /**
701 * Display the current to-do list to the user
702 */
703 private void showToDoList(LinkedList<String> myToDoList) {
704
705 System.out.print("\nHere is your current To-Do List:\n");
706 int i = 1;
707 // Display current to-do list with a leading number
708 for(String readThrough : myToDoList) {
709 System.out.printf("[%d] %s\n", i, readThrough);
710 i++;
711
712 }
713
714 System.out.println();
715
716 }
717
718 /**
719 * Show player progress (the correct guesses) in a game of hangman
720 */
721 private void hangmanShowPlayerProgress(char[] chrEmptyWord, int intCurrentWordLength, int intCurrentTry) {
722
723 if(HANGMAN_MAX_TRIES == 10) {
724
725 switch(intCurrentTry) {
726 case 0:
727 System.out.println(" *------------* ");
728 System.out.println(" | ");
729 System.out.println(" | ");

730 System.out.println(" | ");
731 System.out.println(" | ");
732 System.out.println(" | ");
733 System.out.println(" | ");
734 System.out.println("--------------------");
735 System.out.print("\n\t");
736 break;
737
738 case 1:
739 System.out.println(" *------------* ");
740 System.out.println(" | | ");
741 System.out.println(" | ");
742 System.out.println(" | ");
743 System.out.println(" | ");
744 System.out.println(" | ");
745 System.out.println(" | ");
746 System.out.println("--------------------");
747 System.out.print("\n\t");
748 break;
749
750 case 2:
751 System.out.println(" *------------* ");
752 System.out.println(" | | ");
753 System.out.println(" | O ");
754 System.out.println(" | ");
755 System.out.println(" | ");
756 System.out.println(" | ");
757 System.out.println(" | ");
758 System.out.println("--------------------");
759 System.out.print("\n\t");
760 break;
761
762 case 3:
763 System.out.println(" *------------* ");
764 System.out.println(" | | ");
765 System.out.println(" | O ");
766 System.out.println(" | | ");
767 System.out.println(" | ");
768 System.out.println(" | ");
769 System.out.println(" | ");
770 System.out.println("--------------------");
771 System.out.print("\n\t");
772 break;
773
774 case 4:
775 System.out.println(" *------------* ");
776 System.out.println(" | | ");
777 System.out.println(" | O ");
778 System.out.println(" | -| ");
779 System.out.println(" | ");

780 System.out.println(" | ");
781 System.out.println(" | ");
782 System.out.println("--------------------");
783 System.out.print("\n\t");
784 break;
785
786 case 5:
787 System.out.println(" *------------* ");
788 System.out.println(" | | ");
789 System.out.println(" | O ");
790 System.out.println(" | -|- ");
791 System.out.println(" | ");
792 System.out.println(" | ");
793 System.out.println(" | ");
794 System.out.println("--------------------");
795 System.out.print("\n\t");
796 break;
797
798 case 6:
799 System.out.println(" *------------* ");
800 System.out.println(" | | ");
801 System.out.println(" | O ");
802 System.out.println(" | -|- ");
803 System.out.println(" | | ");
804 System.out.println(" | ");
805 System.out.println(" | ");
806 System.out.println("--------------------");
807 System.out.print("\n\t");
808 break;
809
810 case 7:
811 System.out.println(" *------------* ");
812 System.out.println(" | | ");
813 System.out.println(" | O ");
814 System.out.println(" | -|- ");
815 System.out.println(" | | ");
816 System.out.println(" | / ");
817 System.out.println(" | ");
818 System.out.println("--------------------");
819 System.out.print("\n\t");
820 break;
821
822 case 8:
823 System.out.println(" *------------* ");
824 System.out.println(" | | ");
825 System.out.println(" | O ");
826 System.out.println(" | -|- ");
827 System.out.println(" | | ");
828 System.out.println(" | _/ ");
829 System.out.println(" | ");

830 System.out.println("--------------------");
831 System.out.print("\n\t");
832 break;
833
834 case 9:
835 System.out.println(" *------------* ");
836 System.out.println(" | | ");
837 System.out.println(" | O ");
838 System.out.println(" | -|- ");
839 System.out.println(" | | ");
840 System.out.println(" | _/ \\ ");
841 System.out.println(" | ");
842 System.out.println("--------------------");
843 System.out.print("\n\t");
844 break;
845
846 case 10:
847 System.out.println(" *------------* ");
848 System.out.println(" | | ");
849 System.out.println(" | O ");
850 System.out.println(" | -|- ");
851 System.out.println(" | | ");
852 System.out.println(" | _/ _ ");
853 System.out.println(" | ");
854 System.out.println("--------------------");
855 System.out.print("\n\t");
856 break;
857
858 }
859
860 }
861
862 for(int i = 0; i < intCurrentWordLength; i++) {
863 System.out.printf("%c ", chrEmptyWord[i]);
864
865 }
866
867 System.out.print("\n\n");
868
869 }
870
871 }

