
1 /*

2 * Programmer: Chad Philip Johnson

3 * Date Created: Thursday, November 06th, 2012

4 * Date of Last Modification: Tuesday, December 11th, 2012

5 *

6 * Description:

7 * World.class sets all of the properties of the various the rooms in the

8 * dungeon. It depends on Room.class to instantiate rooms in the dungeon,

9 * Item.class and its subclasses Weapon.class and Armor.class to place

10 * items within rooms, and Character.class to place characters within rooms.

11 */

12

13 import java.util.*;

14 import java.io.Serializable;

15

16 /**

17 * World.class sets all of the properties of the various the rooms in the

18 * dungeon. It depends on Room.class to instantiate rooms in the dungeon,

19 * Item.class and its subclasses Weapon.class and Armor.class to place

20 * items within rooms, and Character.class to place characters within rooms.

21 *

22 * @author Chad Philip Johnson

23 * @version 1.0

24 */

25

26 public class World implements Serializable {

27

28 static final int NUMBER_OF_ROOMS = 6;

29 static final int NO_DOOR = -2;

30 static final int SEALED_DOOR = -1;

31

32 Room[] someRooms;

33

34 /**

35 * Default constructor:

36 * Instantiate all of the dungeon's rooms and the items and characters that go within them.

37 */

38

39 public World() {

40

41 this.someRooms = new Room[NUMBER_OF_ROOMS];

42

43 // Construct layout of the dungeon

44 this.someRooms[0] = new Room("Lobby",

45 "This room is medium in size and the ground is cold and firm. Torchlight\n" +

46 "illuminates the corners of the room. To the West is a large door bolted shut:\n" +

47 "the way back to the town has been sealed for good. To the East is a short\n" +

48 "passageway into another room.",

49 new int[] { /* North door */ NO_DOOR,

50 /* South door */ NO_DOOR,

51 /* West door */ NO_DOOR,

52 /* East door */ 1 },

53 new Item[] { new Weapon("Club", 4), new Armor("Leather Armor", -4) },

54 new Character[] { /* No characters */ },

55 12);

56 this.someRooms[1] = new Room("Inner Chamber",

57 "This room is large, extending in each direction for at least 50 meters.\n" +

58 "Dried up bones litter the floor and the smell of death is all about you.\n" +

59 "To the West is a short passageway. To the North and South are doors\n" +

60 "leading to different rooms. To the East is a set of impressively sized\n" +

61 "double-doors that would require a great deal of effort to open." ,

62 new int[] { /* North door */ 2,

63 /* South door */ 3,

64 /* West door */ 0,

65 /* East door */ SEALED_DOOR },

66 new Item[] { /* No items */ },

67 new Character[] { new Character("Cross-eyed Giant",

68 "I guard the treasure. This is Bob's treasure. Only

Bob may pass.",

69 "Oooh... that tickles.",

70 "Oh hi Bob. Let me open the door for you.") },

71 4);

72 this.someRooms[2] = new Room("Barracks",

73 "This room is very small in size. There are shredded cots and garments\n" +

74 "about the room. To the South is a passageway.",

75 new int[] { /* North door */ NO_DOOR,

76 /* South door */ 1,

77 /* West door */ NO_DOOR,

78 /* East door */ NO_DOOR },

79 new Item[] { new Armor("Shield", -2) },

80 new Character[] { /* No characters */ },

81 2);

82 this.someRooms[3] = new Room("Armory",

83 "Gravel and dirt surround your feet. The racks containing weapon and armor\n" +

84 "items have been picked clean. Whatever things of value that were once here\n" +

85 "are long gone. There is a door to the West and a passageway to the North." ,

86 new int[] { /* North door */ 1,

87 /* South door */ NO_DOOR,

88 /* West door */ 4,

89 /* East door */ NO_DOOR },

90 new Item[] { /* No items */ },

91 new Character[] { /* No characters */ },

92 0);

93 this.someRooms[4] = new Room("Armory Storage",

94 "Here is the source of all of the dirt and gravel: the ceiling has partially\n" +

95 "caved in, spilling rock and debris everywhere. There isn't much room to move\n" +

96 "around here and the only exit is to the East.",

97 new int[] { /* North door */ NO_DOOR,

98 /* South door */ NO_DOOR,

99 /* West door */ NO_DOOR,

100 /* East door */ 3 },

101 new Item[] { new Weapon("Sword", 8) },

102 new Character[] { /* No characters */ },

103 7);

104 this.someRooms[5] = new Room("Treasure Room",

105 "Mountains of gold shimmer as far as the eye can see. Countless gems glisten\n" +

106 "in the torchlight. Unfortunately you are sealed in the dungeon and can't get\n" +

107 "any gold out. Your stomach grumbles.",

108 new int[] { /* North door */ NO_DOOR,

109 /* South door */ NO_DOOR,

110 /* West door */ 1,

111 /* East door */ NO_DOOR },

112 new Item[] { /* No items */ },

113 new Character[] { /* No characters */ },

114 1000000000);

115

116 }

117

118 /**

119 * Returns the default start room when beginning a new game.

120 *

121 * @return Room Room value for the correct room where the player's adventure begins.

122 */

123

124 public Room getStartRoom() { return someRooms[0]; }

125

126 /**

127 * Get the room that the player wishes to go to.

128 *

129 * @param intIndex Numerical value of the door the player went through (or the direction moved in).

130 * @return Room Room value for the connected room object that exists when travelling in that direction.

131 */

132

133 public Room getRoom(int intIndex) { return someRooms[intIndex]; }

134

135 }

